Complex Analusis Study Guide Test 2(Draft"!)

The test is Friday March 17 ${ }^{\text {th }}$. No calculators. Closed notes.

Material for test 1:

- Everything from the $1^{\text {st }}$ test to this week.
- Multivalued functions
- Identify when and why a function is multivalued
- Be able to work with the two typical types of multivalued functions (roots and logs)
- Determine branch points / cuts
- Find values
- Use them in equations
- Understand and illustrate conceptually what's going on
- Complex integration
- Integration on contours (closed or open, but typically open) by parametrizing the contour.
- Be able to find parametric equations to describe any function
- Be able to find parametric equations to describe common non-functions
- Be able to use such parametric equations to find integrals (rectangular or polar, but usually rectangular)
- Be able to find complex integrals (closed or open contours) using antiderivatives
- Know when they apply (There are several theorems)
- Be able to find complex integrals on closed contours using Cauchy's theorem.
- Be able to find complex integrals on closed contours using Cauchy's Integral Formula

Practice problems

Below are a selection of problems from our textbooks that looks like reasonable problems that could appear on a test. An "easy" problem means that you should be able to jump right in and start solving it immediately. A "medium" problem means it is expected that you'll need to think a little before solving the problem. A "hard" problem means you'll need to think a lot and maybe work out some details before solving the problem.

Easy Problems

1. Let $w=z^{\frac{1}{3}}$. Suppose a person starts at $z=1$ with $w(1)=1$ and walks around the unit circle for a total of 720°. What is $w(1)$ this time? (2.55)
2. Find the branch points of $f(z)=\left(\frac{z}{1-z}\right)^{\frac{1}{2}}$ (2.57)
3. Find the branch points of $\left(z^{2}+1\right)^{\frac{1}{3}}$ (2.85)
4. Find $\int_{C}\left(2 y+x^{2}\right) d x+(3 x-y) d y$ where C is the line connecting $3 i$ and $2+4 i$. (4.1c)
5. Find $\int_{C} \bar{z} d z$ where C is the line connecting $2 i$ and $4+2 i$. (4.2b)
6. Find $\int_{C} 2\left(z^{2}+3 z\right) d z$ where C is the circle centered at $2+3 i$ with radius 4 . (4.12b)
7. Find $\int_{C} \frac{d z}{z-5}$ where C is the unit circle. (4.21a)
8. Find $\int_{C} \frac{d z}{z-5}$ where C is the triangle with corners $2-i, 7-3 i$, and $5+6 i(4.21 \mathrm{~b})$
9. Find all values of $i^{\frac{1}{2}}$ (R2.2.2a)
10. Find all values of $|i|^{\frac{1}{2}}$
11. Find $\int_{C}\left(1+2 z+z^{2}\right) d z$ where C is the unit circle. (R2.4.2a)
12. Find $\int_{C}\left(\frac{1}{\left(z-\frac{1}{2}\right)^{2}}\right) d z$ where C is the unit circle. (R2.4.2b)
13. Find $\int_{C}\left(\frac{1}{z(z-2)}\right) d z$ where C is the unit circle. (R2.5.2a)
14. Find an open region on which $\sum_{k=1}^{\infty} z^{k}$ converges. (R3.1.5.a)

Medium problems

1. Find suitable branch cuts of $f(z)=\left(\frac{z}{1-z}\right)^{\frac{1}{2}}$ (2.57)
2. Find all the values of $\sin ^{-1}(2)$. (2.79)
3. Find all the values of $\sinh ^{-1}(2)$. (2.80)
4. Find $\int_{C} d z$ where C is the circle centered at $2+3 i$ with radius 4. (4.12a)
5. Find $\int_{C} \frac{d z}{(z-5)^{n}}$ where C is the unit circle. (4.22a)
6. Find $\int_{C} \frac{d z}{(z-5)^{n}}$ where C is the triangle with corners $2-i, 7-3 i$, and $5+6 i$ (4.22ish)
7. Find all branch points for the multidefined function $f(z)=\log ((z-1)(z-2))$. (R2.3.2.a)
8. Find $\int_{C} \frac{e^{i z}}{z(z-\pi)} d z$ where C is the annulus with inner radii 1 and outer radii 3. (R2.5.3a)
9. Find $\int_{C}\left(\frac{1}{(2 z-1)^{2}}\right) d z$ where C is the unit circle. (R2.6.1b)
10. Let $f_{n}(z)=\frac{1}{z-n}$. Find $\lim _{n \rightarrow \infty} \int_{C} f_{n}(z) d z$ where C is a circle centered at the origin with radius 5. (R3.1.4a)
11. Let $f_{n}(z)=\frac{1}{z-\frac{1}{n}}$. Find $\lim _{n \rightarrow \infty} \int_{C} f_{n}(z) d z$ where C is a circle centered at the origin with radius 5. (R3.1.4bish)

Hard problems

1. The function $w(z)=e^{i z}$ is period. What is its period? Justify your answer. (2.60)
2. Find all values of 2^{1+i}.
3. Find a branch cut for the multidefined function $f(z)=\log ((z-1)(z-2))$. (R2.3.2.a)
4. Find $\int_{-1}^{1} Z^{\frac{1}{2}} d z$ using the principal branch. (R2.4.4b)
