Complex Analysis Study Guide Test 2(Draft!!)

The test is Friday March 17th. No calculators. Closed notes.

Material for test 1:

- Everything from the 1st test to this week.
- Multivalued functions
 - Identify when and why a function is multivalued
 - o Be able to work with the two typical types of multivalued functions (roots and logs)
 - Determine branch points / cuts
 - Find values
 - Use them in equations
 - Understand and illustrate conceptually what's going on
- Complex integration
 - Integration on contours (closed or open, but typically open) by parametrizing the contour.
 - Be able to find parametric equations to describe any function
 - Be able to find parametric equations to describe common non-functions
 - Be able to use such parametric equations to find integrals (rectangular or polar, but usually rectangular)
 - Be able to find complex integrals (closed or open contours) using antiderivatives
 - Know when they apply (There are several theorems)
 - Be able to find complex integrals on closed contours using Cauchy's theorem.
 - o Be able to find complex integrals on closed contours using Cauchy's Integral Formula

Practice problems

Below are a selection of problems from our textbooks that looks like reasonable problems that could appear on a test. An "easy" problem means that you should be able to jump right in and start solving it immediately. A "medium" problem means it is expected that you'll need to think a little before solving the problem. A "hard" problem means you'll need to think a lot and maybe work out some details before solving the problem.

Easy Problems

- 1. Let $w = z^{\frac{1}{3}}$. Suppose a person starts at z = 1 with w(1) = 1 and walks around the unit circle for a total of 720°. What is w(1) this time? (2.55)
- 2. Find the branch points of $f(z) = \left(\frac{z}{1-z}\right)^{\frac{1}{2}}$ (2.57)
- 3. Find the branch points of $(z^2 + 1)^{\frac{1}{3}}$ (2.85)
- 4. Find $\int_{C} (2y + x^2) dx + (3x y) dy$ where C is the line connecting 3i and 2 + 4i. (4.1c)
- 5. Find $\int_C \bar{z} dz$ where *C* is the line connecting 2i and 4 + 2i. (4.2b)
- 6. Find $\int_C 2(z^2 + 3z)dz$ where C is the circle centered at 2 + 3i with radius 4. (4.12b)
- 7. Find $\int_C \frac{dz}{z-5}$ where *C* is the unit circle. (4.21a)
- 8. Find $\int_C \frac{dz}{z-5}$ where C is the triangle with corners 2 i, 7 3i, and 5 + 6i (4.21b)
- 9. Find all values of $i^{\frac{1}{2}}$ (R2.2.2a)
- 10. Find all values of $|i|^{\frac{1}{2}}$
- 11. Find $\int_{C} (1 + 2z + z^2) dz$ where C is the unit circle. (R2.4.2a)
- 12. Find $\int_C \left(\frac{1}{\left(z-\frac{1}{2}\right)^2}\right) dz$ where *C* is the unit circle. (R2.4.2b)
- 13. Find $\int_C \left(\frac{1}{z(z-2)}\right) dz$ where C is the unit circle. (R2.5.2a)
- 14. Find an open region on which $\sum_{k=1}^{\infty} z^k$ converges. (R3.1.5.a)

Medium problems

- 1. Find suitable branch cuts of $f(z) = \left(\frac{z}{1-z}\right)^{\frac{1}{2}}$ (2.57)
- 2. Find all the values of $\sin^{-1}(2)$. (2.79)
- 3. Find all the values of $\sinh^{-1}(2)$. (2.80)
- 4. Find $\int_C dz$ where *C* is the circle centered at 2 + 3i with radius 4. (4.12a)
- 5. Find $\int_C \frac{dz}{(z-5)^n}$ where *C* is the unit circle. (4.22a)
- 6. Find $\int_C \frac{dz}{(z-5)^n}$ where C is the triangle with corners 2 i, 7 3i, and 5 + 6i (4.22ish)
- 7. Find all branch points for the multidefined function $f(z) = \log((z-1)(z-2))$. (R2.3.2.a)
- 8. Find $\int_C \frac{e^{iz}}{z(z-\pi)} dz$ where *C* is the annulus with inner radii 1 and outer radii 3. (R2.5.3a)
- 9. Find $\int_C \left(\frac{1}{(2z-1)^2}\right) dz$ where *C* is the unit circle. (R2.6.1b)
- 10. Let $f_n(z) = \frac{1}{z-n}$. Find $\lim_{n\to\infty} \int_C f_n(z) dz$ where C is a circle centered at the origin with radius 5. (R3.1.4a)
- 11. Let $f_n(z) = \frac{1}{z \frac{1}{n}}$. Find $\lim_{n \to \infty} \int_C f_n(z) dz$ where *C* is a circle centered at the origin with radius 5. (R3.1.4bish)

Hard problems

- 1. The function $w(z) = e^{iz}$ is period. What is its period? Justify your answer. (2.60)
- 2. Find all values of 2^{1+i} .
- 3. Find a branch cut for the multidefined function $f(z) = \log((z-1)(z-2))$. (R2.3.2.a)
- 4. Find $\int_{-1}^{1} z^{\frac{1}{2}} dz$ using the principal branch. (R2.4.4b)